Inverse Scaling in Test-Time Compute: When More ML
Reasoning Tokens Systematically Destroy Performance

Inverse Scaling in Test-Time
Compute: When More ML Reasoning
Tokens Systematically Destroy
Performance

The industry just spent billions convincing you that longer Al thinking equals better
results. New research proves that’'s catastrophically wrong for entire categories of
tasks.

The Uncomfortable Truth About Your Reasoning
Model Investment

Let me paint a scenario that’'s probably happening in your organization right now.
Your ML team deployed a shiny new reasoning model—maybe DeepSeek R1, maybe
something built on the 03 architecture, maybe Claude with extended thinking
enabled. The pitch was seductive: give the model more tokens to “think,” and
watch accuracy climb. You approved the 10x inference budget. You bragged about

www.arturmarkus.com | 1

m Inverse Scaling in Test-Time Compute: When More ML
m Reasoning Tokens Systematically Destroy Performance

it in the quarterly review.

And now your model is systematically getting worse at specific tasks, and nobody
can figure out why.

Here’'s what happened: you fell for the most dangerous assumption in modern Al
deployment—that inference-time compute scaling follows the same predictable
laws as training-time scaling. It doesn’t. And the research proving this isn’t some
fringe academic curiosity. It’s coming from Anthropic’s own alignment science
team, published in July 2025, with results that should terrify anyone running
reasoning models in production.

The finding is brutally simple: for certain task classes, every additional reasoning
token your model generates makes its final answer worse. Not randomly worse.
Monotonically worse. We're talking about controlled experiments showing accuracy
dropping from approximately 70% to 30% as reasoning length increases.

This isn’t a bug. It's a feature of how large reasoning models actually work—and it’s
one the industry has been desperately trying to ignore.

What the Research Actually Shows

Let’'s get specific, because the details matter enormously for anyone trying to
deploy these systems responsibly.

The core research published on arXiv_ in July 2025 isolates something that previous
inverse scaling work never quite nailed down: test-time compute degradation with
fixed model size. This is crucial. Previous research on inverse scaling mostly focused
on what happens when you scale up model parameters during training. This new
work keeps the model frozen and only varies how many tokens the model uses to
reason during inference.

The experimental setup was elegant. Researchers created controlled task
categories designed to stress-test reasoning under different conditions:

» Counting with distractors: Simple enumeration tasks where irrelevant
information is deliberately inserted

* Regression with spurious features: Prediction tasks where misleading
correlations are present in the data

www.arturmarkus.com | 2

https://alignment.anthropic.com/2025/inverse-scaling
https://alignment.anthropic.com/2025/inverse-scaling
https://arxiv.org/abs/2507.14417

m Inverse Scaling in Test-Time Compute: When More ML
m Reasoning Tokens Systematically Destroy Performance

* Deduction and constraint tracking: Logical reasoning tasks requiring
models to maintain multiple rules simultaneously

e Safety-relevant behaviors: Tasks probing whether extended reasoning
causes alignment drift

The results across frontier reasoning models—Claude Opus 4, DeepSeek R1, and
OpenAl’'s 03-style systems—weren’t uniform, but the pattern was clear enough to
demand attention.

DeepSeek R1 showed the most dramatic effect: strong monotone inverse scaling on
the counting-with-distractors task. The model started at roughly 70% accuracy with
minimal reasoning, then steadily degraded to approximately 30% as reasoning
length increased. That’s not a small effect. That's a model getting worse than
random chance on what should be a trivial task, purely because it was allowed to
“think” longer.

The assumption that more compute equals better results is not just
wrong—it’s precisely backwards for entire categories of problems your
reasoning model encounters daily.

The Four Failure Modes You Need to Understand

The research identifies four distinct mechanisms through which extended reasoning
destroys performance. If you're deploying reasoning models in production, you need
to internalize these because they’ll show up in your error logs disguised as
mysterious accuracy drops.

1. Overthinking and Distraction

This is the most intuitive failure mode, and it's devastatingly common. When a
model has more tokens to reason with, it has more opportunity to notice and follow
irrelevant information. The distractor elements that a quick, confident response
would ignore become fascinating rabbit holes when the model has time to explore
them.

Think about what happens when you ask a reasoning model to count specific items
in a list that contains irrelevant items. A short reasoning trace might correctly

www.arturmarkus.com | 3

m Inverse Scaling in Test-Time Compute: When More ML
m Reasoning Tokens Systematically Destroy Performance

identify the target items and count them. A longer trace gives the model time to
second-guess itself: “Wait, should | also count these other items? Let me reconsider
the criteria. Actually, maybe the question is asking something different...”

The extended reasoning doesn’t clarify—it introduces doubt and misdirection.

2. Spurious Feature Reinforcement

This one is particularly insidious for ML teams running models on real-world data.
Extended reasoning gives models more time to identify and rely on misleading
correlations—patterns that happen to be present in the training data but don’t
actually predict the right answer.

In the regression experiments, models with longer reasoning traces were more
likely to latch onto spurious features and build elaborate justifications for why those
features mattered. The additional reasoning tokens weren’t being used to find
better signals; they were being used to construct more convincing arguments for
following the wrong signal.

3. Constraint Drift

Logical reasoning tasks often require maintaining multiple constraints
simultaneously. You need to remember that A implies B, while also tracking that C
excludes D, while also satisfying the original question parameters.

Extended reasoning traces show a pattern the researchers call constraint drift: the
model starts strong, correctly tracking all the logical rules, but as the reasoning
extends, earlier constraints get lost or corrupted. By the time the model reaches its
conclusion, it's operating under a subtly different set of rules than it started
with—and the answer reflects those drifted constraints rather than the original
problem.

This is particularly dangerous for any application involving complex business logic,
legal reasoning, or multi-step verification.

4. Safety Drift

Perhaps the most concerning finding for anyone worried about Al alignment: safety-
relevant behaviors can emerge or degrade specifically in long reasoning traces.

www.arturmarkus.com | 4

Inverse Scaling in Test-Time Compute: When More ML
Reasoning Tokens Systematically Destroy Performance

A model that gives appropriate, aligned responses with short reasoning might
exhibit problematic patterns only when given extended thinking time. The research
suggests this creates a serious evaluation gap: if you're testing your model’s safety
properties only at typical reasoning lengths, you might miss failure modes that
emerge at extended lengths.

Your safety evaluations might be passing because they’re not testing the
reasoning regime where your model actually fails.

Why the Industry Got This Wrong

The excellent analysis from Dmitri Bulaev cuts to the heart of why this research
matters so much: the entire narrative around test-time compute scaling has been
built on an assumption that was never adequately tested.

When OpenAl released ol and demonstrated impressive reasoning capabilities with
extended thinking, the industry collectively decided that inference-time scaling was
the next frontier. The logic seemed sound: if more training compute makes models
smarter, surely more inference compute makes individual responses smarter.

But training-time scaling and inference-time scaling are fundamentally different
phenomena. Training-time scaling works because you’re building a more capable
base model—one with broader knowledge, better representations, and more
sophisticated reasoning circuits baked into the weights. Inference-time scaling is
asking an already-fixed model to do more work on a specific problem.

And here’s the thing about doing more work: it's only beneficial if that work is
pointing in the right direction. For certain task types, extended reasoning doesn’t
refine the model’s understanding—it gives the model more opportunities to go
wrong.

The research suggests that reasoning models have been optimized to produce
longer reasoning traces because longer traces correlate with better performance on
training benchmarks. But correlation isn’t causation. The underlying capability
improvements that led to better benchmark scores came from training advances.
The longer traces were a side effect, not the cause. When you artificially extend
reasoning at inference time, you get the side effect without the capability

www.arturmarkus.com | 5

https://www.bulaev.net/p/when-more-thinking-makes-ai-worse

m Inverse Scaling in Test-Time Compute: When More ML
m Reasoning Tokens Systematically Destroy Performance

improvements.

The Production Engineering Problem

Let’'s get practical about what this means for ML teams running reasoning models in
production systems.

You Can’t Assume Monotonic Improvement

The most immediate engineering implication: you cannot use reasoning length as a
simple quality dial. The intuition that “if the model thinks longer, the answer is more
reliable” is actively dangerous for certain task types.

This breaks a lot of existing production patterns. Many teams have implemented
retry logic that gives the model more tokens when initial responses seem uncertain.
Others have set up adaptive inference budgets that scale with task complexity.
These approaches assume monotonic improvement—and the research proves that
assumption false.

Task-Specific Calibration Is Now Mandatory

The inverse scaling effect is task- and model-dependent. The detailed analysis in
the OpenReview paper shows that some models exhibit strong monotone
degradation on tasks where others show U-shaped behavior or only weak trends.

This means you need task-specific calibration for your reasoning budget. The
optimal reasoning length for a summarization task might be very different from the
optimal length for a counting task, which might be different from the optimal length
for a logical deduction task.

Generic “thinking harder” settings are now technical debt.

Your Evaluation Pipeline Is Probably Incomplete

If your evaluation pipeline tests model performance at a single reasoning
length—probably whatever length your production config specifies—you’re missing

critical failure modes.

The research explicitly recommends probing multiple reasoning lengths during

www.arturmarkus.com | 6

https://openreview.net/pdf/16c9d2ec1a2c68ff255078dd243912d6f9fd1591.pdf
https://openreview.net/pdf/16c9d2ec1a2c68ff255078dd243912d6f9fd1591.pdf

m Inverse Scaling in Test-Time Compute: When More ML
m Reasoning Tokens Systematically Destroy Performance

evaluation. A model that scores 90% accuracy at your default reasoning length
might score 40% at extended lengths. If your production system has any pathway
to extended reasoning (retry logic, complexity scaling, user-controlled thinking
time), you need to evaluate at those lengths.

Task Type Observed Pattern Production Implication
Simple counting with Strong monotone inverse Cap reasoning length
distractors scaling aggressively
Regression with Inverse scaling in most Validate predictions against
spurious features models known clean benchmarks
Constraint trackin Model-dependent (monotone Test specific model

9 or U-shaped) behavior before deploying
Safety-relevant Emergent problems at long Red-team at multiple
behaviors traces reasoning lengths

Detection and Mitigation Strategies

So what do you actually do about this? The research suggests several approaches,
and practical production experience is starting to fill in additional details.

Reasoning Length Monitoring

Step one is visibility. You need to track reasoning length alongside your other
inference metrics, and you need to correlate it with outcome quality.

Set up dashboards that show accuracy or success rate bucketed by reasoning token
count. Look for inverse scaling patterns in your production data. If you see accuracy
declining as reasoning length increases for specific task categories, you've found a
problem worth addressing.

Adaptive Reasoning Caps

For task types that exhibit inverse scaling, implement hard caps on reasoning
length. This feels counterintuitive—you’re telling your expensive reasoning model to
think less—but the research is clear that more thinking isn’t always better.

The tricky part is making this task-aware. You probably want different caps for
different query types, which means you need some upstream classification to route

www.arturmarkus.com | 7

m Inverse Scaling in Test-Time Compute: When More ML
m Reasoning Tokens Systematically Destroy Performance

queries to appropriate reasoning configurations.
Confidence-Based Early Stopping

Some teams are experimenting with early stopping based on model confidence. The
idea is to let the model reason until it reaches a stable, confident answer, then cut
off further reasoning before it has time to second-guess itself into a worse response.

This requires careful calibration because model confidence isn’t always well-
calibrated, but it's a promising direction for avoiding the overthinking failure mode.

Ensemble Across Reasoning Lengths

Another approach: run inference at multiple reasoning lengths and ensemble the
results. If your model gives one answer with short reasoning and a different answer
with long reasoning, that disagreement itself is informative.

You can use the disagreement as a signal to either default to short reasoning (if
inverse scaling is likely) or to route to human review (if you're not sure which
answer is correct).

Training-Time Mitigations

For teams with the resources to fine-tune, there’s emerging work on training models
to be more robust against inverse scaling. The basic approach is to include
examples in training where extended reasoning leads to wrong answers, with
negative reinforcement for the overthinking pattern.

This is still early-stage, but it’s the most fundamental fix—making models that don’t
exhibit the problem in the first place.

The Broader Implications for Al Strategy

Beyond the immediate engineering problems, this research has significant
implications for how organizations should think about Al investment and capability
development.

www.arturmarkus.com | 8

m Inverse Scaling in Test-Time Compute: When More ML
m Reasoning Tokens Systematically Destroy Performance

The Inference Cost Equation Just Changed

Many organizations have been planning their Al infrastructure around the
assumption that inference costs would scale linearly with capability improvements.
Reasoning models already made that equation more complex by trading higher per-
query costs for better results.

Now we know the equation is even more complex: for some tasks, you’'re paying
more for worse results. This changes the ROI calculation for reasoning model
deployment and suggests much more careful analysis of which use cases actually
benefit from extended reasoning.

Benchmark Gaming Gets Worse

The research from arXiv on test-time compute scaling makes clear that published
benchmarks don’t capture these failure modes well. Models that score impressively
on standard reasoning benchmarks might exhibit severe inverse scaling on real
production tasks with distractors and spurious features.

This means you can’t rely on benchmark numbers to predict production
performance for reasoning models. Your evaluation needs to include the specific
task characteristics of your actual use case, including distractor content, constraint
complexity, and other factors that trigger inverse scaling.

The Safety Evaluation Gap Is Serious

If safety-relevant behaviors emerge or degrade at extended reasoning lengths,
current safety evaluation practices are inadequate. Most red-teaming and safety
testing happens at default reasoning configurations—whatever the model typically
produces.

The research suggests we need multi-scale safety evaluation: testing model
behavior across a range of reasoning lengths to catch emergent problems that only
appear when the model thinks longer. This is a significant expansion of what safety
evaluation needs to cover.

A model that appears safe at typical reasoning lengths might be
dangerous at extended lengths—and your current evaluations probably

www.arturmarkus.com | 9

https://arxiv.org/html/2512.02008v1

Inverse Scaling in Test-Time Compute: When More ML
Reasoning Tokens Systematically Destroy Performance

aren’t catching this.

What This Means for the Reasoning Model Race

The competitive dynamics of the Al industry have been pushing toward longer,
more elaborate reasoning capabilities. OpenAl’s o-series, Anthropic’s extended
thinking modes, Google’s chain-of-thought implementations—everyone is racing to
build models that can think harder.

This research suggests that race might be partially misguided. More reasoning
capability is valuable only when paired with the wisdom to know when not to use it.

The winning strategy isn’t maximizing reasoning capacity; it's optimizing reasoning
allocation. The best production systems will be those that know when to think short
and when to think long, matching reasoning investment to task characteristics.

This is @ more nuanced engineering challenge than simply scaling up inference
compute. It requires understanding your task distribution, monitoring for inverse
scaling patterns, and building adaptive systems that can modulate reasoning
appropriately.

Practical Next Steps for ML Teams

If you're running reasoning models in production—or planning to deploy
them—here’s what you should do in response to this research:

1. Audit your task distribution. Identify which tasks in your production
workload involve distractors, spurious features, constraint tracking, or other
characteristics that might trigger inverse scaling.

2. Instrument reasoning length. If you're not already tracking reasoning token
counts as a metric, start. You need this visibility to diagnose inverse scaling
problems.

3. Run multi-length evaluations. Test your model’s accuracy at multiple
reasoning lengths on representative task samples. Look for declining
performance as reasoning extends.

4. Implement task-specific reasoning budgets. Don’t use a single reasoning
configuration for all tasks. Match reasoning length to task requirements.

5. Update your safety testing. If you're doing any red-teaming or safety

www.arturmarkus.com | 10

Inverse Scaling in Test-Time Compute: When More ML
Reasoning Tokens Systematically Destroy Performance

evaluation, extend it to cover multiple reasoning lengths.

6. Reconsider your retry logic. If your system retries with more reasoning
tokens when initial responses seem uncertain, that logic might be
counterproductive for certain tasks.

7. Set up monitoring for production inverse scaling. Create alerts that
trigger when you see accuracy declining alongside increasing reasoning length
in production.

The Research Gap That Remains

While this research is significant, important questions remain unanswered.

We don’t have a clean theoretical model that predicts which tasks will exhibit
inverse scaling before you test them. The task categories identified—distractors,
spurious features, constraint tracking—are descriptive rather than precisely defined.
ML teams still need to empirically discover which of their specific tasks are
vulnerable.

We also don’t fully understand the interaction between model architecture, training
data, and inverse scaling susceptibility. Why does DeepSeek R1 show stronger
inverse scaling than some other models? Is it a training artifact, an architectural
feature, or something else?

And the mitigation strategies are still early-stage. We know that adaptive reasoning
caps and early stopping can help, but we don’t have well-established best practices
for implementing these in production systems.

The research community is actively working on these questions. If you're dealing
with inverse scaling in production, contributing your observations back to the
research community (anonymized as needed) would be valuable.

Conclusion: Rethinking the Reasoning Premium

The Al industry has been operating under a mental model where reasoning models
are strictly better—more expensive, but worth it because they think harder and
produce better results.

This research demolishes that mental model. Reasoning models are different, not
uniformly better. Their extended thinking capabilities are powerful for some tasks

www.arturmarkus.com | 11

Inverse Scaling in Test-Time Compute: When More ML
Reasoning Tokens Systematically Destroy Performance

and actively destructive for others.

The practical implication is that reasoning model deployment requires much more
engineering sophistication than many organizations have applied. You can’t just
throw a reasoning model at your workload and expect universal improvement. You
need task-aware reasoning budget allocation, multi-length evaluation, monitoring
for inverse scaling patterns, and mitigation strategies for when you find them.

The 10x inference budget you approved? It might be paying for systematically
worse results on a significant fraction of your tasks. The good news is that now you
know to look. The bad news is that fixing it requires real engineering work.

But that’s the story of practical ML: the gap between impressive demos and reliable
production systems is always larger than anyone wants to admit. Reasoning models
are no exception.

The inverse scaling research proves that more Al thinking isn’t always
better—and the organizations that win with reasoning models will be
those that learn to calibrate thinking to the task, not those that simply
maximize inference budgets.

www.arturmarkus.com | 12

