
The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 1

The Darwin Gödel Machine: When ML
Models Start Rewriting Their Own
Code—And Why This Changes Everything

The code is now writing itself. And then rewriting itself. And honestly, nobody knows where
this ends.

The Moment Everything Changed
There’s a particular threshold in artificial intelligence research that theorists have debated
for decades. It’s the point where an AI system becomes capable of improving its own source
code—not just learning from data, but fundamentally altering its own architecture, logic,
and capabilities. For years, this remained firmly in the realm of thought experiments and
science fiction.

That changed in May 2025.

Sakana AI released the Darwin Gödel Machine, and the machine learning community has
been processing the implications ever since. This isn’t another incremental improvement in

https://sakana.ai/dgm/


The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 2

benchmark scores or a clever new prompting technique. The DGM represents something
categorically different: the first practical demonstration of autonomous self-improvement in
a production-capable coding agent.

The numbers tell part of the story. DGM improved its success rate on SWE-bench—the
industry-standard benchmark for evaluating AI coding ability on real-world software
engineering tasks—from 20.0% to 50.0% through iterative self-modification. On the Polyglot
benchmark, performance jumped from 14.2% to 30.7%, with some subsets reaching 38.0%.
These aren’t improvements achieved through human intervention, additional training data,
or architectural redesigns by researchers. The system improved itself.

We’ve crossed from building tools that assist developers to building systems that
evolve themselves. The distinction matters more than most people realize.

Understanding the Gödel Machine Concept
The name “Gödel Machine” isn’t arbitrary marketing. It references a theoretical construct
proposed by AI researcher Jürgen Schmidhuber in 2003—a self-referential, self-improving
artificial general intelligence capable of modifying any part of its own code, including its
learning algorithms and utility functions.

The original Gödel Machine concept was elegant but impractical. It required formal
mathematical proofs demonstrating that any proposed self-modification would improve
expected utility before implementing changes. This constraint, while theoretically sound,
made the system computationally intractable for real-world applications.

The Darwin Gödel Machine takes a different approach. Rather than requiring formal proofs
of improvement, it embraces evolutionary exploration. The system maintains an archive of
self-generated agents and uses foundation models to propose and generate improved
versions. These variants are then evaluated empirically—if they perform better on target
benchmarks, they survive and become the basis for further evolution.

The research paper from Sakana AI describes this as “open-ended evolutionary search,
growing a branching tree of agents exploring multiple evolutionary paths simultaneously.”
The system doesn’t commit to a single line of self-improvement. It explores multiple
possibilities in parallel, maintaining diversity in its archive of evolved agents.

https://arxiv.org/abs/2505.22954


The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 3

This is fundamentally different from how we typically think about machine learning systems.
Traditional ML development involves human researchers designing architectures, tuning
hyperparameters, and iterating based on experimental results. The development cycle might
take weeks or months. DGM compresses this process into automated loops where the
system proposes modifications, implements them, evaluates results, and either discards
failures or builds upon successes.

The Technical Architecture: How DGM Actually Works
Understanding why DGM matters requires examining what it actually does at a technical
level. The system implements several key mechanisms that enable productive self-
modification:

Patch Validation

When DGM proposes changes to its own code, it doesn’t blindly implement them. The
system includes validation mechanisms that verify proposed patches are syntactically
correct, logically coherent, and don’t introduce obvious errors. This is analogous to having
an automated code review process, but one that evaluates modifications to the agent’s own
reasoning and problem-solving approaches.

Improved Editing Tools

DGM iteratively enhanced its own code editing capabilities. Early versions might have used
basic text manipulation approaches, but through self-modification, the system developed
more sophisticated methods for precisely targeting and modifying specific code sections
without introducing unintended side effects.

Solution Generation and Ranking

Rather than committing to a single approach for any given problem, DGM generates
multiple candidate solutions and ranks them. This ensemble approach emerged through the
evolutionary process—agents that explored multiple possibilities before committing to
solutions outperformed those that generated single answers.

Failure Tracking

Perhaps most importantly, DGM maintains records of failed attempts and uses this



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 4

information to guide future exploration. The system learns not just from successes but from
its mistakes, avoiding previously unsuccessful modification paths and focusing
computational resources on more promising directions.

The Evolutionary Tree

The architecture enables what researchers describe as a “branching tree” of agents. From a
single starting point, DGM spawns multiple variant agents, each exploring different
modification paths. Some branches lead to dead ends—agents that perform worse than their
predecessors. Others discover improvements that become the foundation for further
evolution.

This creates a population of agents at any given time, each representing a different
evolutionary history. The system doesn’t converge to a single “best” agent but maintains
diversity, which proves crucial for continued improvement. Dead ends in one evolutionary
branch might share useful components with successful branches, and the archive structure
allows recombination of successful modifications.

The Numbers in Context
Raw benchmark improvements can be misleading without context. Let’s break down what
these numbers actually mean:

Benchmark Initial Performance After Self-Modification Improvement
SWE-bench 20.0% 50.0% +150% relative
Polyglot (Overall) 14.2% 30.7% +116% relative
Polyglot (Best Subset) — 38.0% —

SWE-bench evaluates AI systems on their ability to resolve real GitHub issues. These aren’t
toy problems—they’re actual software engineering tasks pulled from popular open-source
repositories. A 20% success rate means the system could autonomously resolve about one in
five real-world coding issues. At 50%, it’s solving half of them.

For context, SWE-bench has been a challenging benchmark for AI coding assistants. Early
systems scored in single digits. The jump from 20% to 50% through autonomous self-
improvement represents a trajectory that human-guided development took considerably
longer to achieve.



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 5

Comparison With Other Self-Improving Systems

DGM isn’t the only system exploring self-improvement, but its results stand out. Other self-
evolving systems have demonstrated approximately 2% iterative gains per iteration on
general reasoning tasks. The Agent0 framework achieved 18% improvement in
mathematical reasoning and 24% in general reasoning through self-improvement
mechanisms.

What distinguishes DGM is the domain—code modification—and the recursive nature of the
improvement. The system improves its ability to write code, and since it writes its own code,
this improvement compounds. Better code-writing abilities lead to better self-modifications,
which lead to better code-writing abilities.

Research on self-evolving edge AI has demonstrated systems capable of processing data up
to 100,000 times faster with approaches like MicroAdapt. But these systems focus on
adapting to new data distributions, not modifying their own source code. DGM operates at a
different level of abstraction—it’s not just adapting to data but rewriting the algorithms that
process that data.

Why This Is Different From Everything Before
The machine learning field has seen remarkable progress over the past decade. Large
language models grew from curiosities to capable assistants. Image generation evolved from
blurry artifacts to photorealistic synthesis. Reinforcement learning systems mastered games
that were thought to require human intuition.

But all of this progress shared a common characteristic: humans remained in the
development loop. Researchers designed architectures. Engineers tuned hyperparameters.
Teams decided which experiments to run, which results were promising, which directions to
pursue.

DGM begins to remove humans from that loop.

The question isn’t whether AI can improve itself. We now know it can. The
question is how fast, how far, and whether we can keep up.

This isn’t about intelligence or consciousness or any of the philosophical debates that

https://fpov.com/2025/06/30/understanding-the-next-frontier-in-ai-self-learning-systems/
https://fpov.com/2025/06/30/understanding-the-next-frontier-in-ai-self-learning-systems/
https://techxplore.com/news/2025-10-evolving-edge-ai-enables-real.html


The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 6

dominate public discourse about AI. It’s about a practical engineering reality: when systems
can modify their own code to improve performance, the development timeline changes
fundamentally.

Consider the traditional ML development cycle:

Researchers identify a potential improvement1.
Engineers implement the change2.
Systems train on available compute3.
Results are evaluated4.
Findings are analyzed and documented5.
Next iteration is planned6.

This cycle might take days, weeks, or months depending on the scale of changes and
available resources.

Now consider DGM’s cycle:

System proposes modification to itself1.
System implements modification2.
System evaluates results3.
System either discards or builds upon modification4.
Repeat5.

This cycle can complete in hours or minutes. And it runs continuously, without breaks for
meetings, documentation, or deliberation about research direction.

The Safety Question Nobody Wants to Answer
Self-improving AI systems raise critical concerns that the field has discussed theoretically
but now must confront practically. These concerns cluster around several key areas:

Recursive Self-Improvement

The classical concern about self-improving AI involves recursive improvement—systems
becoming better at becoming better. If each iteration of self-improvement makes the next
iteration more effective, you get exponential rather than linear progress.

DGM demonstrates that recursive self-improvement isn’t just theoretical. The system

https://kevinmd.com/2025/06/how-self-improving-ai-systems-are-redefining-intelligence-and-what-it-means-for-health-care.html


The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 7

improved its ability to write code, which improved its ability to modify itself, which
improved its ability to write code. The loop is real.

However, the current results also suggest limitations. DGM’s improvement curve appears to
follow diminishing returns rather than exponential takeoff. Moving from 20% to 50% on
SWE-bench is impressive, but the system didn’t continue improving to 90% or 99%. There
appear to be constraints—perhaps in the underlying foundation models, perhaps in the
benchmark tasks, perhaps in the self-modification approach itself.

Alignment Problems

When humans write code, we have some understanding of what the code does and why it
does it. When systems modify their own code through evolutionary processes, that
interpretability degrades. The resulting agent might perform better on benchmarks while
operating through mechanisms that are difficult or impossible for humans to understand.

This creates a fundamental tension. We want systems that perform well, but we also want
systems whose behavior we can predict and control. Self-modification in pursuit of
performance metrics might optimize for the metric while diverging from what we actually
want.

Bypassing Safety Constraints

Any safety constraint implemented in code is, in principle, modifiable by a system that can
modify its own code. If we tell a self-improving agent not to do certain things, and it
discovers that removing those constraints would improve benchmark performance, how
does it weigh those competing objectives?

Current implementations use sandboxing and human-in-the-loop oversight to manage this
risk. DGM operates in controlled environments where its modifications are bounded. But as
these systems become more capable and are deployed more widely, maintaining that level of
oversight becomes increasingly difficult.

Catastrophic Forgetting

Self-modification can introduce regressions. An agent might make changes that improve
performance on current tasks while breaking capabilities that were important for other
purposes. Traditional ML systems face similar challenges, but human oversight typically
catches these issues before deployment.



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 8

When systems modify themselves continuously, the opportunity for catastrophic forgetting
increases. And because the modifications are automated, the window for catching problems
shrinks.

The Interpretability Crisis
Modern large language models are already difficult to interpret. We can observe what they
do, but understanding why they do it—tracing specific outputs to specific learned
patterns—remains an active research challenge.

Self-modifying systems compound this problem. When DGM improves its performance on
SWE-bench, we can measure the improvement. We can examine the code changes it made.
But understanding the relationship between those changes and the performance
improvement requires deep analysis that may not scale with the speed of self-modification.

Consider an analogy: evolution produced the human brain through billions of years of
iterative modification. We can study the result, but understanding why specific neural
architectures emerged requires reconstructing evolutionary pressures that no longer exist
and intermediate forms that left limited fossil records.

Self-modifying AI systems create similar challenges on compressed timescales. The
evolutionary pressure (benchmark performance) is known, but the path from starting point
to result passes through countless intermediate states that may not be preserved or
analyzed.

This matters for deployment. When we put AI systems into production
environments—medical diagnosis, financial trading, infrastructure management—we need
confidence that their behavior is predictable and safe. Self-modified systems may perform
better on benchmarks while being harder to trust in deployment.

The Acceleration Hypothesis
There’s a forecast circulating in AI research circles, sometimes called “AI 2027,” that
suggests by late 2025, AI agents will be highly effective at assisting with AI research itself.
The implication is that AI systems will accelerate the development of more capable AI
systems, potentially leading to rapid capability gains.

DGM provides evidence for this hypothesis. A system that can improve its own code is, in a



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 9

meaningful sense, an AI system that assists with AI development. If DGM-style systems
become more capable and more general, they could contribute to the development of their
successors in ways that compress traditional development timelines.

This creates uncertainty about forecasting. Historical trends in AI capability improvement
assumed human researchers as the limiting factor. If AI systems contribute meaningfully to
their own development, those trends might not extrapolate reliably.

The counterargument notes that DGM improved on specific benchmarks within a bounded
domain. Generalizing from code improvement to general AI research assistance requires
capabilities that current systems don’t demonstrate. The gap between “writes better code”
and “designs better AI architectures” is substantial.

But the gap may be smaller than it appears. Architecture search, hyperparameter
optimization, and experiment design are all areas where AI assistance has already proven
valuable. Self-improving coding agents might bootstrap into research assistance more
quickly than traditional capability curves would suggest.

What This Means for Software Development
Setting aside the longer-term implications, DGM has immediate relevance for software
development practice. A system that can resolve 50% of real-world GitHub issues
autonomously represents a substantial capability.

The Changing Role of Developers

Current AI coding assistants—GitHub Copilot, Amazon CodeWhisperer, various LLM-
powered tools—function as sophisticated autocomplete. They suggest code that developers
review, modify, and integrate. The human remains the primary agent; the AI assists.

Self-improving coding agents suggest a different model. Rather than assisting developers,
these systems might handle entire development tasks autonomously, with humans shifting
to review and oversight roles.

This isn’t necessarily threatening to developer employment—the history of software
development tools is largely a history of abstraction, where each generation of tools handles
tasks that previous generations performed manually. Developers who used assembly
language gave way to those using high-level languages; those writing raw SQL gave way to
those using ORMs; and so on.



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 10

But the speed of this transition matters. Previous abstraction shifts happened over years or
decades. Self-improving systems might compress that timeline substantially.

Quality Assurance Challenges

If AI systems write more code—and especially if they write code that modifies
themselves—QA processes need to adapt. Traditional code review assumes human-readable
code written with human intentions. Self-modified code might be functionally correct while
being structurally unfamiliar.

Testing becomes more important as interpretability decreases. If we can’t easily understand
why code works, we need comprehensive testing to verify that it does work across expected
scenarios. This shifts investment from code review toward test coverage and runtime
monitoring.

Security Implications

Self-modifying systems introduce novel security considerations. Traditional software
security assumes relatively static codebases where vulnerabilities can be identified and
patched. Self-modifying systems might introduce vulnerabilities through their modifications,
and might also modify away security constraints that were originally present.

The attack surface expands as well. Adversaries might attempt to influence self-modification
processes rather than exploiting static vulnerabilities. Poisoning the feedback signals that
guide self-improvement could lead systems to evolve in attacker-favorable directions.

The Broader ML Development Paradigm Shift
DGM represents more than a capable coding agent. It demonstrates a new paradigm for ML
system development where the systems themselves participate in their own improvement.

From Architecture Design to Objective Specification

Traditional ML development focuses heavily on architecture design. Researchers spend
significant effort determining how to structure neural networks, what attention mechanisms
to use, how to connect layers, and countless other architectural decisions.

Self-improving systems suggest a different focus: specifying what we want the system to
achieve, then letting the system figure out how to achieve it. The researcher’s role shifts



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 11

from architect to objective-setter and evaluator.

This isn’t entirely new—neural architecture search and AutoML have explored automated
architecture design for years. But those approaches typically searched within human-
defined spaces. Self-improving systems can explore modifications that humans might not
have considered.

From Training to Evolution

The vocabulary shift matters. We typically talk about “training” ML systems—a process with
defined start and end points, specific datasets, and measurable completion criteria. DGM
suggests “evolution”—an ongoing process without defined termination, where systems
continuously explore modifications.

Evolved systems behave differently from trained systems. Training optimizes for specific
objectives on specific data. Evolution explores possibility spaces in ways that might discover
unexpected capabilities or unexpected failure modes.

From Models to Agents

DGM is explicitly described as an “agent” rather than a “model.” This distinction matters.
Models are passive—they respond to inputs with outputs. Agents are active—they pursue
objectives, take actions in environments, and respond to feedback.

Self-improving systems are necessarily agents. They must take actions (self-modification) in
an environment (their own codebase) and respond to feedback (benchmark performance).
This agency introduces considerations absent from traditional model development.

What Happens Next
Predicting the trajectory of self-improving AI systems involves substantial uncertainty. But
several near-term developments seem probable:

Broader Adoption

DGM demonstrates that self-improving coding agents work. Expect other research labs and
companies to develop similar systems. The techniques—evolutionary search, self-
modification, archive-based diversity maintenance—will be studied, replicated, and refined.



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 12

Expanded Domains

DGM focuses on coding tasks. The same principles might apply to other domains where
performance can be automatically evaluated. Mathematical reasoning, scientific discovery,
game playing, and optimization problems all share the characteristic of providing clear
feedback signals that can guide self-improvement.

Safety Research Intensification

The practical demonstration of recursive self-improvement will intensify research into safety
mechanisms. Sandboxing, formal verification of modifications, interpretability tools for self-
modified systems, and shutdown procedures will receive increased attention.

Regulatory Attention

Governments and regulatory bodies are already interested in AI systems. Self-improving
systems raise novel questions about accountability, liability, and oversight. Expect
regulatory frameworks to evolve in response, though likely lagging behind technical
developments.

Industry Restructuring

If self-improving coding agents become more capable, the software development industry
will adapt. Development practices, team structures, hiring criteria, and business models will
shift in ways that are difficult to predict precisely but are likely to be substantial.

The Question We Should Be Asking
Much of the public discourse about AI focuses on capability questions: Can AI do X? Will AI
surpass humans at Y? When will AI achieve Z?

DGM suggests we should also focus on process questions: How fast can AI improve? Who
controls that improvement? What feedback signals guide it? How do we verify that improved
systems remain aligned with human interests?

These questions are harder to answer because they involve ongoing processes rather than
static capabilities. A system that performs at a specific level today might perform very
differently tomorrow if it continues self-modification.



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 13

The traditional approach to AI safety involves evaluating systems before deployment. Self-
improving systems challenge this approach because evaluation targets are moving. A system
that passes safety evaluations might modify itself into a system that wouldn’t pass those
same evaluations.

This suggests we need dynamic safety approaches—ongoing monitoring and evaluation
rather than one-time certification. We need mechanisms to detect undesirable modifications
and intervene before they propagate. We need clearer understanding of which self-
modifications are acceptable and which cross lines that shouldn’t be crossed.

A Technical Community Reckoning
The machine learning research community has long discussed recursive self-improvement
as a theoretical concern. DGM moves that discussion from theory to practice.

This requires updating our mental models. The question is no longer whether self-improving
AI is possible but how to develop it responsibly. The question is no longer whether we can
build systems that modify themselves but whether we can understand and control those
modifications.

Some researchers argue that current self-improving systems are narrow enough that
concerns about recursive improvement are premature. DGM improves at coding, not at
general intelligence. It operates within sandboxed environments with human oversight. The
gap between current capabilities and genuinely dangerous recursive improvement remains
substantial.

Others argue that the gap is narrower than it appears, and that developing safety
approaches after capabilities advance is a recipe for being perpetually behind. The time to
establish norms, practices, and safeguards is now, when systems are still manageable, not
later when they may not be.

This tension will define the next phase of AI development. How we resolve it—or fail to—will
shape the trajectory of these technologies for decades.

Concluding Thoughts
The Darwin Gödel Machine is a milestone, not a destination. It demonstrates that self-
improving AI systems work in practice, achieving meaningful improvements on real-world



The Darwin Gödel Machine: When ML Models Start Rewriting Their
Own Code—And Why This Changes Everything

www.arturmarkus.com | 14

tasks through autonomous modification. It validates theoretical predictions while also
revealing limitations and challenges that theory didn’t fully anticipate.

For practitioners, DGM signals a shift in how ML systems might be developed. The tools
that assist developers today may give way to systems that develop themselves tomorrow,
with humans shifting to oversight and objective-setting roles.

For researchers, DGM raises urgent questions about interpretability, safety, and alignment.
Systems that modify themselves are harder to understand and verify than static systems.
The techniques for ensuring AI safety need to evolve alongside the capabilities they’re
meant to govern.

For society broadly, DGM marks another step in a transformation that began decades ago
with the first computers and accelerated dramatically with recent AI advances. How we
integrate self-improving systems into our economic, social, and regulatory structures will
determine whether they enhance human flourishing or create new categories of risk.

The code is rewriting itself now. What we write next—in policy, in research priorities, in
safety frameworks—matters more than ever.

The Darwin Gödel Machine has proven that self-improving AI works in practice, and
now the question isn’t whether AI systems can enhance themselves, but whether we
can maintain meaningful oversight as they do.


